

Proceedings of the 52nd Cray User Group (CUG10) 1 of 9

The Automatic Library Tracking Database

Mark Fahey, Nick Jones, and Bilel Hadri
National Institute for Computational Sciences

ABSTRACT: A library tracking database has been developed and put into production at
the National Institute for Computational Sciences and the Oak Ridge Leadership
Computing Facility (both located at Oak Ridge National Laboratory.) The purpose of the
library tracking database is to track which libraries are used at link time on Cray XT5
Supercomputers. The database stores the libraries used at link time and also records the
executables run in a batch job. With this data, many operationally important questions
can be answered such as which libraries are most frequently used and which users are
using deprecated libraries or applications. The infrastructure design and reporting
mechanisms are presented along with collected production data.

KEYWORDS: library tracking, Cray XT, ORNL, NICS, OLCF

1. Introduction
The Automatic Library Tracking Database

(ALTD) tracks linkage and execution information
for applications that are compiled and executed on
High Performance Computing (HPC) systems.
Supercomputing centers like the National Institute
for Computational Science (NICS) and the Oak
Ridge Leadership Computing Facility (OLCF) at
Oak Ridge National Laboratory (ORNL) maintain a
collection of program libraries and software
packages in support of HPC activities across diverse
scientific disciplines, and it behooves these centers
to know which and how many users utilize these
libraries and applications. The role of application
support staff at such centers is not limited to the
installation of third party packages. The staff must
also decide when to deprecate software and remove
it from support. For example, staff supporting the
two Cray XT5s located at NICS and the OLCF,
Kraken and JaguarPF, are responsible for more than
a hundred software packages and libraries, each with
multiple versions. Over time, support staff will need
to change defaults and remove older versions.
Without a database like ALTD, the application
support staff has to make these decisions based on
surveys or personal knowledge. However, decisions
utilizing these methods are based on incomplete
data, forcing staff to be conservative when
deprecating and/or changing default software

versions. The accurate data provide by ALTD allows
the staff to be much more aggressive when
managing supported software. Furthermore, national
agencies such as the Department of Energy (DOE)
and the National Science Foundation (NSF) may
request reports on library and application usage,
especially for those libraries that they have funded
development. The data from ALTD enables quick
accurate replies.

ALTD transparently tracks library and
application usage by all users. The framework tracks
the libraries linked into an application at compilation
time and also tracks executables when they are
launched in a batch job. Information from both link
time and job launch is gathered into a database,
which can then be mined to provide reports. For
example, ALTD can generate data on the most or
least used library with valuable details such as the
version number. This database will help application
support staff in their decision process to upgrade,
deprecate, or remove libraries. It will also provide
the ability to identify users that are still linking
against deprecated libraries or using libraries or
compilers that are determined to have bugs.
Tracking the usage of software not only allows for
better quality user support; it makes support more
efficient, as well.

This paper is organized as follows. Section 2
highlights the requirements and the design of the
project. Section 3 describes the methodology and
implementation. Section 4 presents some results

Proceedings of the 52nd Cray User Group (CUG10) 2 of 9

from early data mining efforts, including the most
used libraries. Section 5 summarizes the project and
its future.

2. Requirements and Design
For the initial release of this project, the Cray

XT architecture is the target machine for tracking
library usage. In brief, there are wrappers that
intercept both the GNU linker (ld) to get the linkage
information and the job launcher (aprun) when the
code has been executed. Subsequent releases will
include support for more job launchers (mpirun,
mpiexec, ibrun, …) and support additional HPC
architectures. Wrapping the linker and the job
launcher through scripts is a simple and efficient
way to intercept the information from the users
automatically and transparently. Nearly every user
will compile a code (thus invoking ld) and will
submit a job to the compute nodes (thus invoking
aprun.)

ALTD only tracks libraries linked into the
applications and does not track function calls.
Tracking function calls could easily be done using
profiling technologies, if that was desired. However,
tracking function calls comes at the cost of
significantly increased compile time and application
runtime. Furthermore, tracking all function calls
does not necessarily increase the understanding of
library usage. There would be a huge amount of data
to store and most of it would be nearly useless1.
Therefore, tracking function calls is not desired.

A primary design goal was to minimize any
increase in compile time or run time, if at all
possible. So a lightweight (almost overhead free)
solution that only tracks library usage was
implemented. The implementation is described in
the next section. Please see Appendix A for a more
detailed discussion of alternative technologies.
Requirements

The ALTD design requirements are summarized
in the following:
• Do not change user experience if at all possible:

This requirement was the overriding philosophy
while implementing the infrastructure. Since
ALTD intercepts the linker and the job launcher,

1 It is our contention that centers would at most be
interested in tracking the primary driver routines
from well-used libraries, and not any auxiliary
routines or user-written routines.

the linker and job launcher wrappers are literally
touched by every user. Therefore, the goal was
that no matter what the ALTD wrappers did
(work or fail), it must not change the user
experience. It should be noted that ALTD
actually links in its own object file into the user
executable and that alteration of the link line can
in rare cases change the user experience.

• Lightweight solution (goal of no overhead): As
mentioned above, the ALTD solution has very
little overhead (some at link time), negligible
overhead at job launch, and nothing during
runtime.

• Must support statically built executables: The
development environment and target
architecture for ALTD officially only supports
statically linked executables. ALTD only tracks
libraries linked during the linking process, and
dynamic libraries that are loaded during the
execution phase are not supported.

Key Assumptions
In the design of ALTD, a few assumptions were

made that may or may not apply at other centers.
These assumptions are now summarized:
• Only one linker and job launcher to intercept:

This assumption means there are only two
binaries to intercept. If a site has more linkers or
job launchers, then wrappers for each might
need to be provided if they have different names.
If they have the same names and just reside in
different locations, then one wrapper for each
may still suffice.

• Only want to track libraries (not function calls):
The reasons were described above. If function
tracking is desired, then this package is not the
solution.

• Want only libraries actually linked into the
application, not everything on original link line:
It is often the case that more libraries are
provided on the link line than are actually linked
into the application (as is definitely the case on
Cray XT systems). ALTD makes sure to only
store those libraries that are actually linked into
the executable and nothing more.

• Want libraries and versions if possible: Version
information is not a direct result of ALTD, but
rather how libraries are installed and then made
available to users. For example, NICS and
OLCF use modulefiles to provide environment
variables with paths to libraries and applications

Proceedings of the 52nd Cray User Group (CUG10) 3 of 9

that then appear on the link line, which ALTD
stores in the database.

• Trust the system hostname: We assume that the
hostname where the executable is linked or run
will correspond to one of the machine tables in
the database. If this is not the case (like on the
external login nodes for JaguarPF at OLCF),
then the ld and/or aprun wrapper must be
modified to work with a “target” hostname that
will match one or more of the machine tables in
the database.

3. Implementation
Linker

Our custom wrapper for the linker (ld) intercepts
the user link line. Because more libraries are
included on the link line than are actually used, we
go through a two-step process to identify the
libraries that are actually linked into the executable
while at the same time including an ELF section
header in the users code. Thus, at a high level, two
main steps are done:

1. The ld wrapper first generates a record in the

tags table (see example in Figure 2.b) with an
auto-incremented tag_id during this step. Once
completed, the record will have the username,
which is retrieved from an environment variable,
and the foreign key, linkline_id, that is set to a
default value (0) along with exit_code set to -1;
these two fields will be updated in the second
phase of the ld script. As shown in the Figure 2.b,
if there is a failure in the compilation process,
the table is updated with exit_code set to -1 and
linkline_id set to 0. Moreover, in case that the
compilation line is the same as the previous one,
linkline_id is not incremented and it will refer
to the linkline_id of a previous command. This
is the case for the tag_id 91132, where user
“user1” performed the same linking process
consecutively.

During this phase, assembly code is
generated, compiled and stored in the section
header of the user’s executable. The assembly
code contains four fields – ALTD version
(Version), build machine (Machine), tag id
(Tag_id), the year (Year). The build machine
and tag id are two pieces of information that are
necessary to be able to accurately track the
executable in the jobs table back to the correct

machine link_tags table. The assembly code
(see Figure 1) is surrounded by some identifying
text that enables us to find and retrieve this data
swiftly in later steps when needed.

Figure 1 ALTD assembly code

After generating the assembly code, a bash
script is called to check the tag_id variable.
Regardless of the exit status entry, the real
linking status will be stored at this point in a
variable for later use. If the tag is 0, then no
insert is made, and ALTD exits gracefully. If
the tag_id is positive, then all the files will be
compiled, and the link with “ld –t” (tracemap) is
performed. This tracemap is inserted into a
temporary file. At this point the temporary file
is stripped of unwanted data by sending that file
through a few sed rules that remove all .o’s that
follow a library name, duplicate libraries,
ldargs.o, and any random.o created by the
compiler, where the random object file may look
like /tmp/axj158.o. (If random object files
created by the compiler were not removed, then
each and every link line would be unique.) The
subsequent object code is formed, the object file
is added to the link line, and the user’s program
is linked.

2. In the second phase, the same script used in step
1 is called again to insert or update the linkline
table. To do so, we use the link line as a search
key in the linkline table. If the search returns
any linkline_id, it means the link line already
exists; and, if no match is found, then a new link
line is inserted and the linking_inc index is
retrieved. Either way, once you have retrieved
the linking_inc, the script uses it to update the
linkline_id in the tags table. Finally, the
exit_code in tags table is updated with the status
code store, which the bash script stored earlier,
and all temp files created by ALTD are removed
before exiting with exit_code. Figure  2 shows
the linkline, tags and jobs tables obtained when
loading the MySQL ALTD database.

Proceedings of the 52nd Cray User Group (CUG10) 4 of 9

Notes
There are three types of program libraries: static,

shared, and dynamic [1]. For most executables built
on a Cray XT, ALTD is able to track them because
they are static or they use shared libraries in rare
cases. However, libraries that are loaded and
unloaded at runtime such as dynamically linked
libraries are not tracked since ALTD retrieves the
information during the link process. Both static and
shared libraries called inside a program are linked
during the compilation processing and therefore

tracked. By wrapping only the linker ld, the first
version of ALTD will be able to track the static and
shared libraries when it is added in the link process,
and the tracking of dynamic libraries will be
considered for future development.

Job Launcher
Launching parallel jobs on compute nodes is

typically done through a parallel job launcher such
as mpirun, mpiexec, or aprun and often within a
batch system (like PBS or LoadLeveler). Interactive
support for parallel jobs is often limited, if even
available. The job launcher is intercepted as a

Figure 2 ALTD database tables: a) linkline table, b) tags table and c) jobs table

Proceedings of the 52nd Cray User Group (CUG10) 5 of 9

secondary measure of “library usage” by counting
how many times an executable is run and thus in
turn how many times the libraries are used by
linking the jobs table data back to the linkline table.
This is different than counting the number of times a
library was used in a link line.

On the Cray XT5 systems, the job launcher is
“aprun” used within a PBS (Torque) job to run
compiled applications across one or more compute
nodes. In the following, the description of the job
launcher interception is discussed. (The method is
portable, but the current implementation is designed
for aprun and as such would require modifications to
work on other architectures.) On both Kraken and
JaguarPF, the aprun job launcher was already
“wrapped” before ALTD was deployed. To work
with the wrappers that were already in place, an
“aprun-prologue” script was implemented. The
aprun wrapper calls this script to do the ALTD job
tracking.
1. The aprun-prologue extracts information on PBS

environment variables such as the working
directory (PBS_O_WORKDIR) and the job id
(PBS_JOBID).

2. The command objdump is run on the executable
to extract the information that has been stored in
the ALTD section header of the user’s
executable during the link process.

3. The extracted information is then inserted in the
jobs table, and then control is passed back to the
aprun wrapper that eventually calls the real
aprun. Figure  2.c shows examples of final
output in the jobs table.

Production
To integrate the wrappers into production, we

suggest adding the wrappers to the default
environment. This can be done in a variety of ways.
The following discusses two possibilities, with the
first being recommended.

Using a modulefile
A modulefile can be used to make ALTD part of

the default environment. The modulefile modifies
the default user PATH and puts the ld and aprun (or
aprun-prologue) wrappers first in the PATH. One
must make sure that the modulefile has a variety of
ALTD-related environment variables set
appropriately. This method gives the user the ability
to unload the ALTD module if it somehow causes a
problem.

The only known problem is the interaction of
tools like Totalview [2] with the job launcher –
Totalview needs to interact with the real job
launcher not a wrapper. A site can either unload
ALTD when Totalview and other similar tools are
loaded or they can edit the Totalview wrappers
themselves so they interact directly with the real job
launcher. On Kraken, instead of additionally
wrapping Totalview, the Totalview modulefile was
modified to automatically unload the ALTD
modulefile. This has the drawback that aprun
invocations via Totalview are not tracked.

This method has the potential benefit of being
more scalable. If one has multiple linkers or job
launchers with the same name in different locations,
loading the ALTD module ensures that the wrappers
are then “in front” of the various executables.

Linker and job launcher relocation
Another installation method is to rename ld and

aprun to ld.x and aprun.x, respectively before
placing the ALTD ld and aprun wrappers in /usr/bin.
Within the ld and aprun wrappers, the wrappers still
need to be configured to point to the location where
the ALTD configuration files reside.

As with the modulefile method, a known
problem is the interaction of tools like Totalview
with the job launcher. In this scenario, the only
solution is to edit the Totalview wrappers
themselves so they interact directly with the
renamed job launcher aprun.x. The relocation of the
real linker and job launcher is how ALTD is
implemented on JaguarPF. Therefore, as indicated
above, the Totalview wrapper had to be edited to
point to the real aprun.

This method is less scalable and maintainable in
the scenario of having multiple linkers or job
launchers; each and every binary has to be renamed,
and the wrappers put in many locations. And if a
user does encounter a problem with ALTD, there is
no simple fix (like unloading the ALTD module).
Instead the user has to figure out that the real linker
and job launcher have been renamed.
Notes

Soon after “turning on ALTD”, some
executables that are tracked by the job launcher
wrapper will not have the ALTD section header.
And, thus, will not have a corresponding entry in the
linkline table because they were compiled before
ALTD went into production. This is not viewed as a
problem with this release; it is just an unfortunate

Proceedings of the 52nd Cray User Group (CUG10) 6 of 9

side effect that goes away over time. The job
launcher wrapper could be edited to ignore
executables without an ALTD section header
(omitting them from the jobs table) so that
everything in the job table had a corresponding link
line, if desired.

For more details, we refer to the ALTD manual
[3].

4. Sample Reports and Impact
In this section, we show a few results from early

data mining from the NICS and OLCF databases.
The OLCF database has data dating back to January
2009 (based on an earlier implementation of ALTD),
and the NICS database has data dating to February
2010. For the latter, making conclusions with only a
couple of months of data is clearly premature.

One of the more interesting reports to run at both
NICS and OLCF is the most used library. If all
libraries are taken into consideration, then the
compiler libraries that are associated with the default
compiler are always the most used libraries. On both
Kraken and JaguarPF, PGI compilers are the default
and, thusly, the most used compiler by far; and, the
most used version basically corresponds to the
particular version that was the default for the longest
amount of time. The Cray MPI and portals libraries
are the next most often used libraries because every
parallel job must link with these libraries. If the
compiler and communication (MPI and portals)
libraries are filtered out, then the results get more
interesting, and some selected results are presented
for both NICS (Kraken) and OLCF (JaguarPF)
below.

Table 1 and Table 2 show the top 5 libraries most
often linked against on both Kraken and JaguarPF,
with Table 1 listing software provided by Cray and
Table 2 listing software installed by local staff.

Table 1 Top 5 libraries used provided by Cray.
Rank Kraken JaguarPF

1 CrayPAT/5.0 CrayPAT/4.x
2 Libsci/10.4 PETSc/3.0
3 PETSc/3.0 PAPI/3.6
4 FFTW/3.2 ACML/4.22
5 HDF5/1.8 HDF5/1.8

2 Cray’s libsci is actually used more than ACML, but
the usage is spread out over many versions (due to
defaults changing over time.)

Table 2 Top 5 libraries used maintained by center.

Rank Kraken JaguarPF
1 SPRNG/2.0b SZIP/2.1
2 PETSc/2.3 HDF5/1.6
3 Iobuf/beta Trilinos/9
4 TAU/2.19 PSPLINE/1.0
5 SZIP/2.1 NetCDF/3.6

On Kraken, the most widely used library

provided by Cray (residing in /opt) is CrayPAT,
Cray’s profiling and analysis tools, and the most
used third-party library is SPRNG (a parallel random
number generator). The most widely used library on
JaguarPF is CrayPAT/4.43. The most used third-
party library not provided by Cray is SZIP/2.1
(which is most often used in conjunction with
HDF5.) Clearly, profiling is widely used on both
machines since CrayPAT is the #1 application linked
against.

Interestingly, Cray’s math library, libsci, does
not show up in JaguarPF’s Top 5 list in Table 1. A
closer look reveals that libsci (over all versions) is
actually the 5th most linked against library on
JaguarPF. If the versions are dropped in Table 1,
then ACML drops out and libsci enters at #5. The
high usage of libsci is somewhat expected because it
is automatically included on the link line by the Cray
compiler wrappers and because the library is
comprised of multiple commonly used math libraries
like BLAS and LAPACK. However, the actual
usage of a particular library, say LAPACK, is
masked by its inclusion in libsci (a known limitation
for this project when this work started.)

The high usage of SPRNG in Table 2 is entirely
by one project doing 3D modeling of jet noise. The
tracking database clearly shows many compilations
with and without profiling tools, an indication of a
development cycle likely doing optimization and/or
scalability work.

Table 3 shows the executables that have been run
most often on Kraken. Note that this is only tracking
those executables that are “launched” via aprun.
This table does not take into account number of CPU
hours, counting only the absolute number of times

3 If all HDF5 versions are grouped together, then
HDF5 is the most used library on JaguarPF. For this
exercise, versions 1.6.x and 1.8.x are considered
different libraries.

Proceedings of the 52nd Cray User Group (CUG10) 7 of 9

the executable has been run (since Feb 2010.) The
table shows a mix of climate (interpo), molecular
dynamics (namd and amber), astrophysics (chimera)
and bioinformatics (mpiblast.) Interpo is a pre/post-
processing tool used to interpolate from one grid
resolution to another for the climate IFS code, and
the other top four codes are considered main
application codes.

Table 3 Top 5 applications executed on Kraken
tracked by ALTD database.

Rank Library # instances
1 interpo4 60,032
2 namd 8,389
3 amber 5,784
4 chimera 4,000
5 mpiblast 2,917

Another interesting report is that of the least

used libraries or applications. With only 3 months of
data on Kraken, the usefulness of a least used library
report for Kraken is questionable. Therefore, we
only report on the least used library on JaguarPF (for
the 2009 calendar year); and, the results require
interpretation. Many libraries that had zero usage
also had utility functions that the users ran instead of
linking against the library. Since some of these
utilities were built before the tracking started, there
was no tracked usage of these binaries. There are
other libraries where specific versions had zero
usage, which is easily explainable since these
versions were never set as the default module
version. Nonetheless, a least used report indicates
for example that fftpack/5 has never been linked
against since tracking began on JaguarPF. As a
result, it clearly becomes a candidate for
discontinued support if not removal from the
software list.

NICS has also been tracking executables in an
alternate fashion since Kraken went into production.
A MySQL database stores the processed Torque
accounting records for every job run on Kraken and
the corresponding job scripts. The executables are
identified from the job scripts using a set of
heuristics that map patterns to application names,
and the results are stored in a database. A web

4 The tracking database also shows that interpo was
compiled on the NICS XT4 (Athena) and then run
on the XT5 (Kraken) 60,032 times.

interface can then be used to generate metrics on the
applications that have been run. These tools do not
attempt to track library usage, just executables. All
executables can be tracked in this way (with no way
to distinguish between user or staff supplied.)

Table 4 shows the top 10 applications based on
absolute number of times an executable was found in
job scripts by searching for a known list of
executable names, for the same date range as Table 3.
Table 4 includes executables run by staff while
Table 3 does not. This method has a few drawbacks
including false positive matches, inability to count
executables that appear in loops more than once, and
strings that match more than one “application.”

Table 4 Top 10 applications executed on Kraken based
on Torque job scripts.

Rank Library # instances
1 arps5 11844

2 amber 6789

3 namd6 6450

4 chimera 4473

5 h3d7 4270

6 sms 3383

7 sses 3153

8 vasp 3131

9 mpiblast 2919

10 gromacs 2234

Table 3 shows that ALTD ranks interpo, namd,
amber, chimera, and mpiblast in the top five. The
data pulled from the Torque job scripts in Table 4
does not include interpo, because the heuristic search
has not been updated to look for it. Conversely,

5 Arps was only run on the login/service nodes and
therefore not tracked by ALTD.
6 Namd is actually called many more times than
reported in Table 4 because some user scripts have
the executable inside a loop, and as such only
counted once.
7 The “h3d” string is found in many job scripts, but
often is not the executable in those scripts and thus
the number reported is much higher than reality.

Proceedings of the 52nd Cray User Group (CUG10) 8 of 9

ALTD did not detect arps because it was run without
being launched by aprun.

To be clear, there are fairly simple reasons why
the results from ALTD differ from the Torque job
scripts. For example, a user can name their directory
mdrun for their own project resulting in false
positives since mdrun is also the name of a parallel
executable associated with gromacs (an molecular
dynamics code.) In contrast, ALTD has entries for
each time an executable was launched and,
therefore, can provide an accurate count for those
executables launched by aprun.

5. Conclusions

Retrospective
The ALTD infrastructure was put into

production to track library and executable usage
while attempting to not change the user experience.
In this project, two of the most used commands on
the Cray XT architecture were intercepted (ld and
aprun.) The largest challenge was deploying this
infrastructure that affects everybody without anyone
noticing, because any mistake is noticed almost
immediately by users. Only a few users have
encountered problems with the infrastructure, and all
of the problems have been effectively addressed.
Furthermore, linking and job launching take
negligibly longer than without intercepting, which
was a design goal.

Final Remarks
Overall, this project has been a success. The

primary goals that were set out at the beginning of
the process have been achieved, and we plan to
make improvements to the infrastructure in future
releases. Ultimately, the system has proven itself
already in that we have tens of thousands of records
in the databases. The data is being actively mined to
determine how best to orient software support in the
future.

Acknowledgments
The authors would like to thank our colleagues

for their help and input during the deployment of
this infrastructure. We would especially like to
recognize Blake Hitchcock and Patrick Lu. Blake
implemented the first version of the ALTD
infrastructure in C, which is still deployed on the
Jaguar systems at the OLCF. Patrick re-implemented

the ALTD infrastructure in Python for use on the
NICS systems.

This research was supported in part by the
National Science Foundation. In addition, this
research used resources at NICS supported by the
National Science Foundation.

This research was also partly sponsored by the
Mathematical, Information, and Computational
Sciences Division, Office of Advanced Scientific
Computing Research, U.S. Department of Energy
under contract number DE-AC05-00OR22725 with
UT-Battelle, LLC. This research used resources of
the OLCF at ORNL, which is supported by the
Office of Science of the U.S. Department of Energy
under contract number DE-AC05-00OR22725.

About the Authors
Mark Fahey is the Scientific Computing Group

Leader for the National Institute for Computational
Sciences at Oak Ridge National Laboratory. He is a
long-time CUG member and currently serves as a
Director at Large. He can be reached at Oak Ridge
National Laboratory, Building 5100, Room 210,
P.O. Box 2008 MS6173, Oak Ridge, TN 37831-
6173, E-Mail: mfahey@utk.edu.

Nick Jones is a high performance computing
systems administrator in the National Institute for
Computational Sciences at Oak Ridge National
Laboratory. Nick can be reached at Oak Ridge
National Laboratory, Building 5100, P.O. Box 2008
MS6173, Oak Ridge, TN 37831-6173, E-Mail:
jones@nics.utk.edu.

Bilel Hadri is a Computational Scientist in the
National Institute for Computational Sciences at Oak
Ridge National Laboratory. He has a PhD in
Computer Science and a Masters in Applied
Mathematics from the University of Houston. He
can be reached at Oak Ridge National Laboratory,
Building 5100, Room 218, P.O. Box 2008 MS6173,
Oak Ridge, TN, 37831-6173, E-Mail:
bhadri@utk.edu.

Works Cited

[1] David Wheeler. Program Library HOWTO.
[Online]. http://www.dwheeler.com/program-
library/Program-Library-HOWTO.pdf

[2] Totalview Technologies, "Totalview Reference
Guide," 2010.

Proceedings of the 52nd Cray User Group (CUG10) 9 of 9

[3] Mark Fahey, Bilel Hadri, and Nick Jones,
"ALTD Manaul," National Institute of
Computational Sciences, University of
Tennessee, Manual in preparation 2010.

[4] Satish Balay et al., "PETSc Users Manual,"
2008.

[5] E. Anderson et al., LAPACK Users' Guide
(Third ed.).: SIAM, 1999.

[6] Cray. Using Cray Performance Analysis Tools.
[Online]. http://docs.cray.com/books/S-2376-41/

[7] Wolfgang Nagel. Vampir - Performance
Optimization. [Online]. http://www.vampir.eu/

[8] Sameer Shende and Alan Malony, "TAU: The
TAU Parallel Performance System,"
International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 287-
311, 2006.

[9] J. Carter, L. Oliker, D. Skinner, R. Biswas J.
Borrill, "Integrated Performance Monitoring of a
Cosmology Application on Leading HEC
Platforms ," in International Conference on
Parallel Processing: ICPP, 2005.

Appendix A
To the best of our knowledge, no tool has been

developed for the explicit goal and objectives
presented in Section 2. There are other approaches
that can be considered, but all have major drawbacks
some directly related to the Cray XT architecture.
We briefly discuss a few alternative methods in this
section.

The first approach to mention is that of adding
logging functionality to existing libraries. Since
some libraries provide an “init” function (like
PETSc [4]) the init function could be modified to log
information into a tracking database. This would be
fairly straightforward, however each version of the
library would have to be modified similarly over
time. This becomes a maintenance issue.

Furthermore, the bigger problem is what to do with
libraries that don’t have an “init” function (like
BLAS or LAPACK [5].) To track library usage, one
would have to insert code into each and every
routine just to know if LAPACK was used at all.
This is an untenable solution.

Another approach would be to use profiling
technologies as briefly discussed in Section 2. State
of the art profiling and tracing tools such as
CrayPAT [6], Vampir [7], and TAU [8] perform
analysis for only one user and provide all the
function calls in the application. These tools could
provide similar information as a by-product, but they
are heavy-weight and introduce compile-time and
runtime overheads that should not affect every user
all the time. In the same scope, IPM (Integrated
Performance Monitoring [9]) can be used to obtain a
performance profile. It can do this while maintaining
low overhead by using a unique hashing approach
that allows a fixed memory footprint and minimal
CPU usage.

Yet another approach is to modify the behavior
of the dynamic linker during both program linking
and execution. With dynamic linking, any function
call an application makes to any shared library can
be intercepted. Once intercepted, anything can be in
that function, including calling the real function the
application originally intended to call. To use library
interposition, you need to create a special shared
library and set the LD_PRELOAD environment
variable. As noted in Section 2 under requirements,
the method described in this paper has to support
statically linked executables and this clearly relies
on dynamic linking.

One other tracking mechanism that could be
implemented is to log all module loads (and
unloads). In this way, any time a library was loaded
via a module, that would imply the library was
linked into a user program. However, that
implication is not necessarily true, and for example,
it is unknown into what executable the library was
linked.

