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ABSTRACT: A library tracking database has been developed and put into production at 
the National Institute for Computational Sciences and the Oak Ridge Leadership 
Computing Facility (both located at Oak Ridge National Laboratory.) The purpose of the 
library tracking database is to track which libraries are used at link time on Cray XT5 
Supercomputers. The database stores the libraries used at link time and also records the 
executables run in a batch job. With this data, many operationally important questions 
can be answered such as which libraries are most frequently used and which users are 
using deprecated libraries or applications. The infrastructure design and reporting 
mechanisms are presented along with collected production data.  
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1. Introduction 
The Automatic Library Tracking Database 

(ALTD) tracks linkage and execution information 
for applications that are compiled and executed on 
High Performance Computing (HPC) systems. 
Supercomputing centers like the National Institute 
for Computational Science (NICS) and the Oak 
Ridge Leadership Computing Facility (OLCF) at 
Oak Ridge National Laboratory (ORNL) maintain a 
collection of program libraries and software 
packages in support of HPC activities across diverse 
scientific disciplines, and it behooves these centers 
to know which and how many users utilize these 
libraries and applications. The role of application 
support staff at such centers is not limited to the 
installation of third party packages.  The staff must 
also decide when to deprecate software and remove 
it from support. For example, staff supporting the 
two Cray XT5s located at NICS and the OLCF, 
Kraken and JaguarPF, are responsible for more than 
a hundred software packages and libraries, each with 
multiple versions. Over time, support staff will need 
to change defaults and remove older versions. 
Without a database like ALTD, the application 
support staff has to make these decisions based on 
surveys or personal knowledge. However, decisions 
utilizing these methods are based on incomplete 
data, forcing staff to be conservative when 
deprecating and/or changing default software 

versions. The accurate data provide by ALTD allows 
the staff to be much more aggressive when 
managing supported software. Furthermore, national 
agencies such as the Department of Energy (DOE) 
and the National Science Foundation (NSF) may 
request reports on library and application usage, 
especially for those libraries that they have funded 
development.  The data from ALTD enables quick 
accurate replies. 

ALTD transparently tracks library and 
application usage by all users. The framework tracks 
the libraries linked into an application at compilation 
time and also tracks executables when they are 
launched in a batch job. Information from both link 
time and job launch is gathered into a database, 
which can then be mined to provide reports. For 
example, ALTD can generate data on the most or 
least used library with valuable details such as the 
version number. This database will help application 
support staff in their decision process to upgrade, 
deprecate, or remove libraries. It will also provide 
the ability to identify users that are still linking 
against deprecated libraries or using libraries or 
compilers that are determined to have bugs.  
Tracking the usage of software not only allows for 
better quality user support; it makes support more 
efficient, as well. 

This paper is organized as follows. Section 2 
highlights the requirements and the design of the 
project. Section 3 describes the methodology and 
implementation. Section 4 presents some results 
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from early data mining efforts, including the most 
used libraries. Section 5 summarizes the project and 
its future. 

2. Requirements and Design 
For the initial release of this project, the Cray 

XT architecture is the target machine for tracking 
library usage. In brief, there are wrappers that 
intercept both the GNU linker (ld) to get the linkage 
information and the job launcher (aprun) when the 
code has been executed. Subsequent releases will 
include support for more job launchers (mpirun, 
mpiexec, ibrun, …) and support additional HPC 
architectures. Wrapping the linker and the job 
launcher through scripts is a simple and efficient 
way to intercept the information from the users 
automatically and transparently. Nearly every user 
will compile a code (thus invoking ld) and will 
submit a job to the compute nodes (thus invoking 
aprun.) 

ALTD only tracks libraries linked into the 
applications and does not track function calls. 
Tracking function calls could easily be done using 
profiling technologies, if that was desired. However, 
tracking function calls comes at the cost of 
significantly increased compile time and application 
runtime. Furthermore, tracking all function calls 
does not necessarily increase the understanding of 
library usage. There would be a huge amount of data 
to store and most of it would be nearly useless1. 
Therefore, tracking function calls is not desired.     

A primary design goal was to minimize any 
increase in compile time or run time, if at all 
possible. So a lightweight (almost overhead free) 
solution that only tracks library usage was 
implemented.  The implementation is described in 
the next section.  Please see Appendix A for a more 
detailed discussion of alternative technologies. 
Requirements 

The ALTD design requirements are summarized 
in the following: 
• Do not change user experience if at all possible: 

This requirement was the overriding philosophy 
while implementing the infrastructure. Since 
ALTD intercepts the linker and the job launcher, 

                                                
1 It is our contention that centers would at most be 
interested in tracking the primary driver routines 
from well-used libraries, and not any auxiliary 
routines or user-written routines. 

the linker and job launcher wrappers are literally 
touched by every user. Therefore, the goal was 
that no matter what the ALTD wrappers did 
(work or fail), it must not change the user 
experience. It should be noted that ALTD 
actually links in its own object file into the user 
executable and that alteration of the link line can 
in rare cases change the user experience. 

• Lightweight solution (goal of no overhead): As 
mentioned above, the ALTD solution has very 
little overhead (some at link time), negligible 
overhead at job launch, and nothing during 
runtime.   

• Must support statically built executables: The 
development environment and target 
architecture for ALTD officially only supports 
statically linked executables.  ALTD only tracks 
libraries linked during the linking process, and 
dynamic libraries that are loaded during the 
execution phase are not supported.  

Key Assumptions 
In the design of ALTD, a few assumptions were 

made that may or may not apply at other centers.  
These assumptions are now summarized: 
• Only one linker and job launcher to intercept: 

This assumption means there are only two 
binaries to intercept. If a site has more linkers or 
job launchers, then wrappers for each might 
need to be provided if they have different names.  
If they have the same names and just reside in 
different locations, then one wrapper for each 
may still suffice. 

• Only want to track libraries (not function calls): 
The reasons were described above. If function 
tracking is desired, then this package is not the 
solution. 

• Want only libraries actually linked into the 
application, not everything on original link line: 
It is often the case that more libraries are 
provided on the link line than are actually linked 
into the application (as is definitely the case on 
Cray XT systems). ALTD makes sure to only 
store those libraries that are actually linked into 
the executable and nothing more. 

• Want libraries and versions if possible: Version 
information is not a direct result of ALTD, but 
rather how libraries are installed and then made 
available to users. For example, NICS and 
OLCF use modulefiles to provide environment 
variables with paths to libraries and applications 
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that then appear on the link line, which ALTD 
stores in the database. 

• Trust the system hostname: We assume that the 
hostname where the executable is linked or run 
will correspond to one of the machine tables in 
the database. If this is not the case (like on the 
external login nodes for JaguarPF at OLCF), 
then the ld and/or aprun wrapper must be 
modified to work with a “target” hostname that 
will match one or more of the machine tables in 
the database. 

3. Implementation 
Linker 

Our custom wrapper for the linker (ld) intercepts 
the user link line. Because more libraries are 
included on the link line than are actually used, we 
go through a two-step process to identify the 
libraries that are actually linked into the executable 
while at the same time including an ELF section 
header in the users code. Thus, at a high level, two 
main steps are done: 

 
1. The ld wrapper first generates a record in the 

tags table (see example in Figure 2.b) with an 
auto-incremented tag_id during this step. Once 
completed, the record will have the username, 
which is retrieved from an environment variable, 
and the foreign key, linkline_id, that is set to a 
default value (0) along with exit_code set to -1; 
these two fields will be updated in the second 
phase of the ld script. As shown in the Figure 2.b, 
if there is a failure in the compilation process, 
the table is updated with exit_code set to -1 and 
linkline_id set to 0. Moreover, in case that the 
compilation line is the same as the previous one, 
linkline_id is not incremented and it will refer 
to the linkline_id of a previous command. This 
is the case for the tag_id 91132, where user 
“user1” performed the same linking process 
consecutively. 

During this phase, assembly code is 
generated, compiled and stored in the section 
header of the user’s executable. The assembly 
code contains four fields – ALTD version 
(Version), build machine (Machine), tag id 
(Tag_id), the year (Year). The build machine 
and tag id are two pieces of information that are 
necessary to be able to accurately track the 
executable in the jobs table back to the correct 

machine link_tags table. The assembly code 
(see Figure 1) is surrounded by some identifying 
text that enables us to find and retrieve this data 
swiftly in later steps when needed.  

 
Figure 1 ALTD assembly code 

After generating the assembly code, a bash 
script is called to check the tag_id variable. 
Regardless of the exit status entry, the real 
linking status will be stored at this point in a 
variable for later use. If the tag is 0, then no 
insert is made, and ALTD exits gracefully.  If 
the tag_id is positive, then all the files will be 
compiled, and the link with “ld –t” (tracemap) is 
performed.  This tracemap is inserted into a 
temporary file.  At this point the temporary file 
is stripped of unwanted data by sending that file 
through a few sed rules that remove all .o’s that 
follow a library name, duplicate libraries, 
ldargs.o, and any random.o created by the 
compiler, where the random object file may look 
like /tmp/axj158.o. (If random object files 
created by the compiler were not removed, then 
each and every link line would be unique.) The 
subsequent object code is formed, the object file 
is added to the link line, and the user’s program 
is linked. 

2. In the second phase, the same script used in step 
1 is called again to insert or update the linkline 
table. To do so, we use the link line as a search 
key in the linkline table. If the search returns 
any linkline_id, it means the link line already 
exists; and, if no match is found, then a new link 
line is inserted and the linking_inc index is 
retrieved. Either way, once you have retrieved 
the linking_inc, the script uses it to update the 
linkline_id in the tags table. Finally, the 
exit_code in tags table is updated with the status 
code store, which the bash script stored earlier, 
and all temp files created by ALTD are removed 
before exiting with exit_code. Figure  2 shows 
the linkline, tags and jobs tables obtained when 
loading the MySQL ALTD database.  
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Notes 
There are three types of program libraries: static, 

shared, and dynamic [1]. For most executables built 
on a Cray XT, ALTD is able to track them because 
they are static or they use shared libraries in rare 
cases. However, libraries that are loaded and 
unloaded at runtime such as dynamically linked 
libraries are not tracked since ALTD retrieves the 
information during the link process. Both static and 
shared libraries called inside a program are linked 
during the compilation processing and therefore 

tracked. By wrapping only the linker ld, the first 
version of ALTD will be able to track the static and 
shared libraries when it is added in the link process, 
and the tracking of dynamic libraries will be 
considered for future development.  

Job Launcher 
Launching parallel jobs on compute nodes is 

typically done through a parallel job launcher such 
as mpirun, mpiexec, or aprun and often within a 
batch system (like PBS or LoadLeveler).  Interactive 
support for parallel jobs is often limited, if even 
available. The job launcher is intercepted as a 

Figure 2 ALTD database tables: a) linkline table, b) tags table and c) jobs table 
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secondary measure of “library usage” by counting 
how many times an executable is run and thus in 
turn how many times the libraries are used by 
linking the jobs table data back to the linkline table.  
This is different than counting the number of times a 
library was used in a link line.  

On the Cray XT5 systems, the job launcher is 
“aprun” used within a PBS (Torque) job to run 
compiled applications across one or more compute 
nodes. In the following, the description of the job 
launcher interception is discussed.  (The method is 
portable, but the current implementation is designed 
for aprun and as such would require modifications to 
work on other architectures.) On both Kraken and 
JaguarPF, the aprun job launcher was already 
“wrapped” before ALTD was deployed.  To work 
with the wrappers that were already in place, an 
“aprun-prologue” script was implemented. The 
aprun wrapper calls this script to do the ALTD job 
tracking. 
1. The aprun-prologue extracts information on PBS 

environment variables such as the working 
directory (PBS_O_WORKDIR) and the job id 
(PBS_JOBID).   

2. The command objdump is run on the executable 
to extract the information that has been stored in 
the ALTD section header of the user’s 
executable during the link process.  

3. The extracted information is then inserted in the 
jobs table, and then control is passed back to the 
aprun wrapper that eventually calls the real 
aprun. Figure  2.c shows examples of final 
output in the jobs table. 

Production 
To integrate the wrappers into production, we 

suggest adding the wrappers to the default 
environment. This can be done in a variety of ways. 
The following discusses two possibilities, with the 
first being recommended. 

Using a modulefile 
A modulefile can be used to make ALTD part of 

the default environment. The modulefile modifies 
the default user PATH and puts the ld and aprun (or 
aprun-prologue) wrappers first in the PATH. One 
must make sure that the modulefile has a variety of 
ALTD-related environment variables set 
appropriately.  This method gives the user the ability 
to unload the ALTD module if it somehow causes a 
problem.   

The only known problem is the interaction of 
tools like Totalview [2] with the job launcher – 
Totalview needs to interact with the real job 
launcher not a wrapper. A site can either unload 
ALTD when Totalview and other similar tools are 
loaded or they can edit the Totalview wrappers 
themselves so they interact directly with the real job 
launcher. On Kraken, instead of additionally 
wrapping Totalview, the Totalview modulefile was 
modified to automatically unload the ALTD 
modulefile. This has the drawback that aprun 
invocations via Totalview are not tracked. 

This method has the potential benefit of being 
more scalable. If one has multiple linkers or job 
launchers with the same name in different locations, 
loading the ALTD module ensures that the wrappers 
are then “in front” of the various executables. 

Linker and job launcher relocation 
Another installation method is to rename ld and 

aprun to ld.x and aprun.x, respectively before 
placing the ALTD ld and aprun wrappers in /usr/bin.  
Within the ld and aprun wrappers, the wrappers still 
need to be configured to point to the location where 
the ALTD configuration files reside. 

As with the modulefile method, a known 
problem is the interaction of tools like Totalview 
with the job launcher. In this scenario, the only 
solution is to edit the Totalview wrappers 
themselves so they interact directly with the 
renamed job launcher aprun.x.  The relocation of the 
real linker and job launcher is how ALTD is 
implemented on JaguarPF.  Therefore, as indicated 
above, the Totalview wrapper had to be edited to 
point to the real aprun.  

This method is less scalable and maintainable in 
the scenario of having multiple linkers or job 
launchers; each and every binary has to be renamed, 
and the wrappers put in many locations.  And if a 
user does encounter a problem with ALTD, there is 
no simple fix (like unloading the ALTD module).  
Instead the user has to figure out that the real linker 
and job launcher have been renamed. 
Notes 

Soon after “turning on ALTD”, some 
executables that are tracked by the job launcher 
wrapper will not have the ALTD section header. 
And, thus, will not have a corresponding entry in the 
linkline table because they were compiled before 
ALTD went into production. This is not viewed as a 
problem with this release; it is just an unfortunate 



 
Proceedings of the 52nd Cray User Group (CUG10) 6 of 9 

side effect that goes away over time. The job 
launcher wrapper could be edited to ignore 
executables without an ALTD section header 
(omitting them from the jobs table) so that 
everything in the job table had a corresponding link 
line, if desired. 

For more details, we refer to the ALTD manual 
[3]. 

4. Sample Reports and Impact 
In this section, we show a few results from early 

data mining from the NICS and OLCF databases.  
The OLCF database has data dating back to January 
2009 (based on an earlier implementation of ALTD), 
and the NICS database has data dating to February 
2010. For the latter, making conclusions with only a 
couple of months of data is clearly premature. 

One of the more interesting reports to run at both 
NICS and OLCF is the most used library. If all 
libraries are taken into consideration, then the 
compiler libraries that are associated with the default 
compiler are always the most used libraries. On both 
Kraken and JaguarPF, PGI compilers are the default 
and, thusly, the most used compiler by far; and, the 
most used version basically corresponds to the 
particular version that was the default for the longest 
amount of time. The Cray MPI and portals libraries 
are the next most often used libraries because every 
parallel job must link with these libraries. If the 
compiler and communication (MPI and portals) 
libraries are filtered out, then the results get more 
interesting, and some selected results are presented 
for both NICS (Kraken) and OLCF (JaguarPF) 
below. 

Table 1 and Table 2 show the top 5 libraries most 
often linked against on both Kraken and JaguarPF, 
with Table 1 listing software provided by Cray and 
Table 2 listing software installed by local staff.  

 
Table 1 Top 5 libraries used provided by Cray. 
Rank Kraken JaguarPF 

1 CrayPAT/5.0 CrayPAT/4.x 
2 Libsci/10.4 PETSc/3.0 
3 PETSc/3.0 PAPI/3.6 
4 FFTW/3.2 ACML/4.22 
5 HDF5/1.8 HDF5/1.8 

                                                
2 Cray’s libsci is actually used more than ACML, but 
the usage is spread out over many versions (due to 
defaults changing over time.) 

 
Table 2 Top 5 libraries used maintained by center. 

Rank Kraken JaguarPF 
1 SPRNG/2.0b SZIP/2.1 
2 PETSc/2.3 HDF5/1.6 
3 Iobuf/beta Trilinos/9 
4 TAU/2.19 PSPLINE/1.0 
5 SZIP/2.1 NetCDF/3.6 
 
On Kraken, the most widely used library 

provided by Cray (residing in /opt) is CrayPAT, 
Cray’s profiling and analysis tools, and the most 
used third-party library is SPRNG (a parallel random 
number generator). The most widely used library on 
JaguarPF is CrayPAT/4.43. The most used third-
party library not provided by Cray is SZIP/2.1 
(which is most often used in conjunction with 
HDF5.)  Clearly, profiling is widely used on both 
machines since CrayPAT is the #1 application linked 
against. 

Interestingly, Cray’s math library, libsci, does 
not show up in JaguarPF’s Top 5 list in Table 1. A 
closer look reveals that libsci (over all versions) is 
actually the 5th most linked against library on 
JaguarPF.  If the versions are dropped in Table 1, 
then ACML drops out and libsci enters at #5. The 
high usage of libsci is somewhat expected because it 
is automatically included on the link line by the Cray 
compiler wrappers and because the library is 
comprised of multiple commonly used math libraries 
like BLAS and LAPACK. However, the actual 
usage of a particular library, say LAPACK, is 
masked by its inclusion in libsci (a known limitation 
for this project when this work started.) 

The high usage of SPRNG in Table 2 is entirely 
by one project doing 3D modeling of jet noise. The 
tracking database clearly shows many compilations 
with and without profiling tools, an indication of a 
development cycle likely doing optimization and/or 
scalability work.  

Table 3 shows the executables that have been run 
most often on Kraken. Note that this is only tracking 
those executables that are “launched” via aprun.  
This table does not take into account number of CPU 
hours, counting only the absolute number of times 

                                                
3 If all HDF5 versions are grouped together, then 
HDF5 is the most used library on JaguarPF.  For this 
exercise, versions 1.6.x and 1.8.x are considered 
different libraries. 
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the executable has been run (since Feb 2010.)  The 
table shows a mix of climate (interpo), molecular 
dynamics (namd and amber), astrophysics (chimera) 
and bioinformatics (mpiblast.)  Interpo is a pre/post-
processing tool used to interpolate from one grid 
resolution to another for the climate IFS code, and 
the other top four codes are considered main 
application codes. 
 
Table 3 Top 5 applications executed on Kraken 
tracked by ALTD database. 

Rank Library # instances 
1 interpo4 60,032 
2 namd 8,389 
3 amber 5,784 
4 chimera 4,000 
5 mpiblast 2,917 

 
Another interesting report is that of the least 

used libraries or applications. With only 3 months of 
data on Kraken, the usefulness of a least used library 
report for Kraken is questionable. Therefore, we 
only report on the least used library on JaguarPF (for 
the 2009 calendar year); and, the results require 
interpretation. Many libraries that had zero usage 
also had utility functions that the users ran instead of 
linking against the library. Since some of these 
utilities were built before the tracking started, there 
was no tracked usage of these binaries. There are 
other libraries where specific versions had zero 
usage, which is easily explainable since these 
versions were never set as the default module 
version. Nonetheless, a least used report indicates 
for example that fftpack/5 has never been linked 
against since tracking began on JaguarPF. As a 
result, it clearly becomes a candidate for 
discontinued support if not removal from the 
software list. 

NICS has also been tracking executables in an 
alternate fashion since Kraken went into production.  
A MySQL database stores the processed Torque 
accounting records for every job run on Kraken and 
the corresponding job scripts. The executables are 
identified from the job scripts using a set of 
heuristics that map patterns to application names, 
and the results are stored in a database. A web 
                                                
4 The tracking database also shows that interpo was 
compiled on the NICS XT4 (Athena) and then run 
on the XT5 (Kraken) 60,032 times. 

interface can then be used to generate metrics on the 
applications that have been run. These tools do not 
attempt to track library usage, just executables.  All 
executables can be tracked in this way (with no way 
to distinguish between user or staff supplied.)  

Table 4 shows the top 10 applications based on 
absolute number of times an executable was found in 
job scripts by searching for a known list of 
executable names, for the same date range as Table 3. 
Table 4 includes executables run by staff while 
Table 3 does not. This method has a few drawbacks 
including false positive matches, inability to count 
executables that appear in loops more than once, and 
strings that match more than one “application.” 
 
Table 4 Top 10 applications executed on Kraken based 
on Torque job scripts. 

Rank Library # instances 
1 arps5 11844 

2 amber 6789 

3 namd6 6450 

4 chimera 4473 

5 h3d7 4270 

6 sms 3383 

7 sses 3153 

8 vasp 3131 

9 mpiblast 2919 

10 gromacs 2234 
 

Table 3 shows that ALTD ranks interpo, namd, 
amber, chimera, and mpiblast in the top five. The 
data pulled from the Torque job scripts in Table 4 
does not include interpo, because the heuristic search 
has not been updated to look for it.  Conversely, 

                                                
5 Arps was only run on the login/service nodes and 
therefore not tracked by ALTD. 
6 Namd is actually called many more times than 
reported in Table 4 because some user scripts have 
the executable inside a loop, and as such only 
counted once. 
7 The “h3d” string is found in many job scripts, but 
often is not the executable in those scripts and thus 
the number reported is much higher than reality. 
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ALTD did not detect arps because it was run without 
being launched by aprun. 

To be clear, there are fairly simple reasons why 
the results from ALTD differ from the Torque job 
scripts. For example, a user can name their directory 
mdrun for their own project resulting in false 
positives since mdrun is also the name of a parallel 
executable associated with gromacs (an molecular 
dynamics code.) In contrast, ALTD has entries for 
each time an executable was launched and, 
therefore, can provide an accurate count for those 
executables launched by aprun. 

5. Conclusions 

Retrospective 
The ALTD infrastructure was put into 

production to track library and executable usage 
while attempting to not change the user experience. 
In this project, two of the most used commands on 
the Cray XT architecture were intercepted (ld and 
aprun.)  The largest challenge was deploying this 
infrastructure that affects everybody without anyone 
noticing, because any mistake is noticed almost 
immediately by users. Only a few users have 
encountered problems with the infrastructure, and all 
of the problems have been effectively addressed. 
Furthermore, linking and job launching take 
negligibly longer than without intercepting, which 
was a design goal.  

Final Remarks 
Overall, this project has been a success. The 

primary goals that were set out at the beginning of 
the process have been achieved, and we plan to 
make improvements to the infrastructure in future 
releases. Ultimately, the system has proven itself 
already in that we have tens of thousands of records 
in the databases.  The data is being actively mined to 
determine how best to orient software support in the 
future. 
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Appendix A 
To the best of our knowledge, no tool has been 

developed for the explicit goal and objectives 
presented in Section 2. There are other approaches 
that can be considered, but all have major drawbacks 
some directly related to the Cray XT architecture. 
We briefly discuss a few alternative methods in this 
section. 

The first approach to mention is that of adding 
logging functionality to existing libraries. Since 
some libraries provide an “init” function (like 
PETSc [4]) the init function could be modified to log 
information into a tracking database.  This would be 
fairly straightforward, however each version of the 
library would have to be modified similarly over 
time. This becomes a maintenance issue.  

Furthermore, the bigger problem is what to do with 
libraries that don’t have an “init” function (like 
BLAS or LAPACK [5].)  To track library usage, one 
would have to insert code into each and every 
routine just to know if LAPACK was used at all.  
This is an untenable solution. 

Another approach would be to use profiling 
technologies as briefly discussed in Section 2.  State 
of the art profiling and tracing tools such as 
CrayPAT [6], Vampir [7], and TAU [8] perform 
analysis for only one user and provide all the 
function calls in the application. These tools could 
provide similar information as a by-product, but they 
are heavy-weight and introduce compile-time and 
runtime overheads that should not affect every user 
all the time. In the same scope, IPM (Integrated 
Performance Monitoring [9]) can be used to obtain a 
performance profile. It can do this while maintaining 
low overhead by using a unique hashing approach 
that allows a fixed memory footprint and minimal 
CPU usage.    

Yet another approach is to modify the behavior 
of the dynamic linker during both program linking 
and execution. With dynamic linking, any function 
call an application makes to any shared library can 
be intercepted. Once intercepted, anything can be in 
that function, including calling the real function the 
application originally intended to call. To use library 
interposition, you need to create a special shared 
library and set the LD_PRELOAD environment 
variable. As noted in Section 2 under requirements, 
the method described in this paper has to support 
statically linked executables and this clearly relies 
on dynamic linking. 

One other tracking mechanism that could be 
implemented is to log all module loads (and 
unloads).  In this way, any time a library was loaded 
via a module, that would imply the library was 
linked into a user program. However, that 
implication is not necessarily true, and for example, 
it is unknown into what executable the library was 
linked. 

 


